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Exercise 6.5 – Computation of homopolar impedance of ungrounded MV networks 

 

For the electrical distribution network represented in the figure below, you must: 

1. define and verify the characteristics of the medium-voltage (MV) cable LMV (EPR 

insulation), considering a maximum intervention time of 𝑡𝑠𝑐
𝐼𝑀𝑉1 = 300𝑚𝑠 for circuit 

breaker IMV1 after a three-phase short circuit. 

2. Determine the direct, inverse and homopolar impedances of the medium-voltage 

network without considering the presence of the cable LMV. 

3. Determine the homopolar impedance of the medium-voltage network considering the 

presence of the cable LMV and re-compute the phase-to-ground short circuit current of 

the MV grid. 

 

Medium-voltage grid data (MV grid): 

• Nominal voltage: 𝑉𝑛
𝑀𝑉 = 20 𝑘𝑉 

• Neutral: ungrounded 

• Short-circuit power: 𝑆𝑠𝑐
𝑀𝑉 = 500 𝑀𝑉𝐴 

• Phase-to-ground short circuit current of the MV grid: 𝐼𝑠𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 = 75 𝐴 

• Ratio 𝑅𝑠𝑐
𝑀𝑉 𝑋𝑠𝑐

𝑀𝑉 = 0⁄  

MV/LV transformer T data: 

• Nominal power: 𝑆𝑛
𝑇 = 400 𝑘𝑉𝐴 

• Nominal transformer ratio: 𝑉𝑛1
𝑇 /𝑉𝑛2

𝑇 = 20/0.4 𝑘𝑉 

• Winding connection: Delta (20 kV winding) – Star grounded (0.4 kV winding) 

• Short circuit voltage 𝑉𝑠𝑐
𝑇 = 0,05𝑝𝑢 

• Short circuit copper losses 𝑃𝑠𝑐
𝑇 = 4.5 𝑘𝑊 
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Characteristics of medium voltage cables (20kV) with EPR insulation (Joule integral 𝐾 =

143 
𝐴∙𝑠

1
2 

𝑚𝑚2). 

 

Cross section 

[mm2] 

Resistance pul 
[Ω/km] 

Reactance pul 
[Ω/km] 

Shunt capacitance 

pul 
[μF/km] 

Maximum 

Current 

[A] 

25 0.929 0.15 0.18 157 

35 0.670 0.14 0.17 190 

50 0.495 0.13 0.19 228 
70 0.344 0.13 0.21 284 

95 0.248 0.12 0.23 346 

120 0.198 0.12 0.25 399 

 

 

Solution 

 

Q1 – In order to define the characteristics of the MV cable connecting the MV grid with the 

transformer, we need to first select the cross section of the MV cable to withstand the rated 

current of the transformer on its MV side. 

 

𝐼𝑛
𝑇 =

𝑆𝑛
𝑇

√3𝑉𝑛1
𝑇

=
400 ∙ 103𝑉𝐴

√3 ∙ 20 ∙ 103𝑉
= 11.54 𝐴 

 

By making reference to the provided characteristics of medium voltage cables (20kV) with 

EPR insulation, the cable with the minimum cross section𝐴𝐿𝑀𝑉
= 25 𝑚𝑚2  is sufficient to 

supply the transformer at its nominal current since this cable has a maximum current of 157 A. 

However, we need to verify whether this cable can withstand the Joule integral inequality 

associated to a three-phase short circuit at the beginning of the cable and considering a 

maximum intervention time of 𝑡𝑠𝑐
𝐼𝑀𝑉1 = 300𝑚𝑠 for the circuit breaker IMV1, namely:  

 

(𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉 )

2
𝑡𝑠𝑐

𝐼𝑀𝑉1 ≤ (𝐾𝐿𝑀𝑉
)

2
(𝐴𝐿𝑀𝑉

)
2
 

 

Let us first compute the three-phase short circuit at the beginning of the cable. For this 

computation, we can directly use the short circuit power of the MV supplying grid (indeed, 

there are no other lines between the beginning of the cable and the supplying grid). 

 

𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉 =

𝑆𝑠𝑐
𝑀𝑇

√3𝑉𝑛
𝑀𝑉

=
500 ∙ 106𝑉𝐴

√3 ∙ 20 ∙ 103𝑉
= 14.4 𝑘𝐴 

 

Therefore, we can compute the minimum cross section of the cable satisfying the Joule integral 

inequality. 

 

𝐴𝐿𝑀𝑉
≥ √

(𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉 )

2
𝑡𝑠𝑐

𝐼𝑀𝑉1

(𝐾𝐿𝑀𝑉
)

2 =
√

(14.4 ∙ 103𝐴)2 ∙ 0.3𝑠

(143
𝐴 ∙ 𝑠

1
2 

𝑚𝑚2 )

2 = 55.2 𝑚𝑚2 
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By looking at the table with the characteristics of medium voltage cables (20kV) with EPR 

insulation, the first one that satisfies the above inequality has a cross section of 70 mm2 and 

has the following parameters: 

 

• Resistance pul 𝑟𝑝𝑢𝑙 = 0.344 
Ω

𝑘𝑚
 

• Reactance pul 𝑥𝑝𝑢𝑙 = 0.13 
Ω

𝑘𝑚
 

• Shunt capacitance pul 𝑐𝑝𝑢𝑙 = 0.21 
μF

𝑘𝑚
  

• Shunt susceptance 𝑋𝑝𝑢𝑙
𝑠ℎ = −𝑗

1

2𝜋𝑓∙𝑐𝑝𝑢𝑙
= −𝑗

1

2𝜋𝑓∙0.21∙10−6𝐹 
= −𝑗15.16 kΩ ∙ 𝑘𝑚 

 

And for the whole cable 

• Total cable resistance 𝑟𝐿𝑀𝑉
= 0.344 

Ω

𝑘𝑚
∙ 2.5 𝑘𝑚 = 0.86 Ω  

• Total cable reactance 𝑥𝐿𝑀𝑉
= 0.13 

Ω

𝑘𝑚
∙ 2.5 𝑘𝑚 = 0.325 Ω 

• Total cable shunt capacitance 𝑐𝐿𝑀𝑉
= 0.21 

μF

𝑘𝑚
∙ 2.5 𝑘𝑚 = 0.525 μF  

• Total cable shunt susceptance 𝑋𝐿𝑀𝑉

𝑠ℎ = −𝑗
1

2𝜋𝑓∙𝑐𝐿𝑀𝑉

= −𝑗
1

2𝜋𝑓∙0.525∙10−6𝐹 
= −𝑗6.06 kΩ 

 

Q2 – From the definition of short circuit power of a network (𝑆𝑠𝑐
𝑀𝑉 = √3𝑉𝑛

𝑀𝑉𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉 )and its 

corresponding three phase short circuit current 𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉 , we can compute the short circuit 

impedance of the MV grid at the direct and inverse sequence. 

 

|𝑍̅𝑠𝑐
𝑀𝑉| = |𝑍̅𝑑

𝑀𝑉| = |𝑍̅𝑖
𝑀𝑉| =

𝑉𝑛
𝑀𝑉

√3𝐼𝑠𝑐,3𝑝ℎ
𝑀𝑉

=
20 ∙ 103𝑉

√3 ∙ 514.4 ∙ 103𝐴
= 0.8 Ω 

 

Furthermore, since 𝑅𝑠𝑐
𝑀𝑉 𝑋𝑠𝑐

𝑀𝑉 = 0⁄ , the phasor 𝑍̅𝑠𝑐
𝑀𝑉 is simply: 

 

𝑍̅𝑠𝑐
𝑀𝑉 = 𝑅𝑠𝑐

𝑀𝑉 + 𝑗𝑋𝑠𝑐
𝑀𝑉 = 𝑗0.8 Ω  

 

For the homopolar sequence, the text of the exercise provides the phase-to-ground short circuit 

current of the MV grid 𝐼𝑠𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 = 75 𝐴. Now, from the theory on short circuit calculus, we 

know the following relationship linking the phasor of the phase-to-ground short circuit current, 

the network sequence impedances and the pre-fault phasor of the voltage where the fault 

occurs: 

 

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3𝐸̅

𝑍̅𝑑
𝑀𝑉 + 𝑍̅𝑖

𝑀𝑉 + 𝑍̅0
𝑀𝑉 

 

Now, considering the pre-fault phasor of the voltage where the fault occurs as the reference 

one (i.e., we place 𝐸̅ on the real axis), we do know from the theory the location of the phasors 

of the post-fault phase-to-ground voltages, phase-to-phase voltages, homopolar voltage and 

current as well as the fault current (see figure below taken from the lecture 6.6). 
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Therefore, we can write 

 

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3𝐸̅

𝑍̅𝑑
𝑀𝑉 + 𝑍̅𝑖

𝑀𝑉 + 𝑍̅0
𝑀𝑉 = 𝑗75𝐴 

 

And 

 

𝑍̅0
𝑀𝑉 =

3𝐸̅

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 − (𝑍̅𝑑

𝑀𝑉 + 𝑍̅𝑖
𝑀𝑉) =

3
20 ∙ 103𝑉

√3
𝑗75𝐴

− 2(𝑗0.8 Ω) = −𝑗463.5 Ω 

 

 

Alternatively, we can compute the 𝑍̅0
𝑀𝑉  by considering that |𝑍̅0

𝑀𝑉| ≫ |𝑍̅𝑑
𝑀𝑉|, |𝑍̅𝑖

𝑀𝑉| and the fact 

that, for ungrounded networks, we know that 𝑍̅0
𝑀𝑉 ≈ −𝑗𝑋0

𝑀𝑉 . Therefore, we can write the 

following approximated computation: 

 

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3𝐸̅

𝑍̅𝑑
𝑀𝑉 + 𝑍̅𝑖

𝑀𝑉 + 𝑍̅0
𝑀𝑉 ≈

3𝐸̅

𝑗𝑋0
𝑀𝑉 

 

Therefore, we have 

 

𝑗𝑋0
𝑀𝑉 ≈

3𝐸̅

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3𝐸̅

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3
20 ∙ 103𝑉

√3
𝑗75𝐴

= −𝑗461.9 Ω 

 

 

Q3 – To determine the homopolar impedance of the medium-voltage network considering the 

presence of the cable LMV, we must observe that the inclusion in the MV grid of the 2.5 km 

cable produces a decrease of the grid homopolar sequence impedance. Indeed, since the grid 
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has an ungrounded neutral, its homopolar sequence impedance is composed by the shunt 

susceptances of the lines/cables (see figure lecture from lecture 6.5). 

 

 
 

Therefore, cable shunt susceptance 𝑋𝐿𝑀𝑉

𝑠ℎ  is in parallel with the grid homopolar impedance 

𝑍̅0
𝑀𝑉. Therefore, we can compute the new value of the (grid + LMV) homopolar impedance 

as follows (ee remind that the total cable shunt susceptance 𝑋𝐿𝑀𝑉

𝑠ℎ = −𝑗6.06 kΩ): 

 

𝑍̅0
𝑀𝑉+𝐿𝑀𝑉 =

𝑍̅0
𝑀𝑉 ∙ 𝑋𝐿𝑀𝑉

𝑠ℎ

𝑍̅0
𝑀𝑉 + 𝑋𝐿𝑀𝑉

𝑠ℎ =
(−𝑗461.9 Ω) ∙ (−𝑗6060 Ω)

(−𝑗461.9 Ω) + (−𝑗6060 Ω)
= −𝑗430.6 Ω 

 

As expected, the presence of the cable reduces the magnitude of 𝑍̅0
𝑀𝑉+𝐿𝑀𝑉. 

 

The new phase-to-ground short circuit current of the MV grid taking into account the presence 

of the cable is therefore: 

 

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 =

3𝐸̅

𝑍̅𝑑
𝑀𝑉 + 𝑍̅𝑖

𝑀𝑉 + 𝑍̅0
𝑀𝑉+𝐿𝑀𝑉

=

3
20 ∙ 103𝑉

√3
𝑗0.8 Ω + 𝑗0.8 Ω − 𝑗430.6 Ω

= 𝑗80.8 𝐴 

 

. Or, in a more approximated way,  

 

𝐼𝑠̅𝑐,𝑝ℎ−𝑔𝑛𝑑
𝑀𝑉 ≈

3𝐸̅

𝑍̅0
𝑀𝑉+𝐿𝑀𝑉

=

3
20 ∙ 103𝑉

√3
−𝑗430.6 Ω

= 𝑗80.4 𝐴 

 

As expected, the presence of the cable increases the magnitude of the phase-to-ground short 

circuit current of the MV grid. 


